How to Manage Pests

UC Pest Management Guidelines


Aggregate Sheath Spot of Rice

Pathogen: Rhizoctonia oryzae-sativae

(Reviewed 4/04, updated 4/04, pesticides updated 10/15)

In this Guideline:


Aggregate sheath spot lesions first appear on the lower leaf sheaths at the water line during the tillering stage. Lesions are circular to elliptical with gray-green to straw-colored centers surrounded by distinct brown margins. Frequently, additional margins form around the initial lesion, producing a series of concentric bands. A strip of light-colored necrotic cells runs down the lesion center. Later in the season, secondary infections frequently occur well above the water line.


The disease cycles of aggregate sheath spot and stem rot are similar in a number of ways. Rhizoctonia oryzae-sativae produces sclerotia that are resistant to adverse conditions and allow the fungus to overwinter. In spring and early summer, these overwintering bodies float on the field water surface and are the source of initial infections that occur at the water line. Unlike the sclerotia of the stem rot fungus, these sclerotiaare brown, rectangular to irregularly globose in shape and are much larger in size. Also, unlike stem rot, secondary leaf sheath infections progress up the stem and, under favorable conditions, may reach as high as the panicle. On the sheath, lesions often coalesce and may cover the entire leaf sheath. Leaves of diseased sheaths turn bright yellow and then die. Under favorable conditions (high humidity or rain), the disease can spread to the flag leaf and panicle rachises, killing entire tillers. Later in the season, the fungus begins to produce new sclerotia on or in diseased tissue. These sclerotia overwinter in crop residue or in soil.

Aggregate sheath spot of rice can also colonize the culm, where it may cause a culm rot, but this aspect of the disease is rare in California.

Aggregate sheath spot is similar to but distinct from sheath blight of rice caused by Rhizoctonia solani, a serious disease of rice in the southern U.S. and other parts of the world. Sheath blight has not been observed in California.


The most effective way to manage aggregate sheath spot is to limit the carryover inoculum from one year to the next by removing or destroying crop residues. Treatments may be necessary if monitoring indicates leaf lesions are approaching the flag leaf sheath.

Cultural Control

Disease cycles of stem rot and aggregate sheath spot are similar and they are managed with similar methods, i.e., use of the most resistant varieties available and cultural practices that reduce carryover inoculum. All public rice varieties currently grown in California are susceptible to aggregate sheath spot of rice to some degree.

Burning of crop residues after harvest provides the most effective control for this disease. Complete removal of infected crop residues also minimizes carryover inoculum levels. Moldboard plowing, crop rotation, or fallowing should also minimize carryover inoculum. Avoid dense rice stands as they may enhance disease development.

Organically Acceptable Control Methods

All the cultural controls discussed above are organically acceptable.

Monitoring and Treatment Decisions

Monitoring is essential in making treatment decisions for aggregate sheath spot. After tillering, examine tillers on a weekly basis in several locations throughout the field for the presence and progress of aggregate sheath spot lesions. If lesions have begun to elongate and are approaching the flag leaf sheath or the leaf sheath below the flag leaf, a treatment may be justified. Treat before lesions spread to the leaf sheath on the leaf below the flag leaf. When making a treatment decision, also consider the crop growth stage. For example, lesions that are approaching the flag leaf before boot are generally considered to be a greater risk than lesions approaching the flag leaf after flowering.

Common name Amount per acre REI‡ PHI‡
(Example trade name)   (hours) (days)

UPDATED: 10/15
Calculate impact of pesticide on air quality
Bee precaution pesticide ratings
When choosing a pesticide, consider its usefulness in an IPM program by reviewing the pesticide's properties, efficacy, application timing, and information relating to resistance management, honey bees (PDF), and environmental impact. Not all registered pesticides are listed. Always read the label of the product being listed.
  (Quadris) 12.3–15.4 fl oz 4 28
  MODE-OF-ACTION GROUP NAME (NUMBER1): Quinone outside inhibitor (11)
  COMMENTS: A protectant fungicide. Follow label directions. Limited studies have shown a single application at the lowest labeled rate to be effective, but results may vary under different conditions. Under heavy disease pressure and conditions favorable for disease development, a second application may be applied. Water holding period is 14 days.
  (Quilt Xcel) 14–27 fl oz 12 35
  MODE-OF-ACTION GROUP NAME (NUMBER1): Quinone outside inhibitor (11) and Demethylation inhibitor (3)
Restricted entry interval (REI) is the number of hours (unless otherwise noted) from treatment until the treated area can be safely entered without protective clothing. Preharvest interval (PHI) is the number of days from treatment to harvest. In some cases the REI exceeds the PHI. The longer of two intervals is the minimum time that must elapse before harvest.
1 Group numbers are assigned by the Fungicide Resistance Action Committee (FRAC) according to different modes of actions (for more information, see Fungicides with a different group number are suitable to alternate in a resistance management program. For fungicides with mode-of-action Group numbers 1, 4, 9, 11, or 17, make no more than one application before rotating to a fungicide with a different mode-of-action Group number; for fungicides with other Group numbers, make no more than two consecutive applications before rotating to fungicide with a different mode-of-action Group number.



[UC Peer Reviewed]

UC IPM Pest Management Guidelines: Rice
UC ANR Publication 3465


C. A. Greer, UC Cooperative Extension, Colusa County

Acknowledgments for contributions to the disease section:
R. K. Webster, Plant Pathology, UC Davis

Top of page

Statewide IPM Program, Agriculture and Natural Resources, University of California
All contents copyright © 2017 The Regents of the University of California. All rights reserved.

For noncommercial purposes only, any Web site may link directly to this page. FOR ALL OTHER USES or more information, read Legal Notices. Unfortunately, we cannot provide individual solutions to specific pest problems. See our Home page, or in the U.S., contact your local Cooperative Extension office for assistance.

Agriculture and Natural Resources, University of California

Accessibility   Contact webmaster.